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The quantum structure of carbon tori
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Abstract

Carbon nanotubes are very promising new materials that fit perfectly well into the miniaturisation of technology, but at
the same time show a fascinating quantum structure. When the tube is closed to form a torus the structure acquires discrete
molecular characteristics. In the present paper the electronic levels of tori are obtained by a double folding of the Brillouin
zone of graphitic carbon. An illustrative example of an hypothetical giant torus with molecular symmetry is fully analysed,
with special emphasis on its pictorial representation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Material science is quickly approaching the real-
isation of molecular objects with toroidal topology.
Circular carbon nanotubes have already been reported
[1–4] but are probably open coils rather than closed
tori. From the theoretical point of view, toroidal
quantum structures offer fascinating new perspectives
which should further be explored without delay.

As we have described elsewhere [5] the electronic
structure of perfect tori made up of carbon hexagons
can be obtained in the tight-binding approximation by
a double zone folding procedure. In the present paper
we apply this method to generate the spectrum of a
giant torus, and to analyse its symmetries.

2. The construction of toroids from the graphene
sheet

A polyhex carbon toroid can be constructed by cut-
ting out a parallellogram from the graphene sheet,
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rolling it up to a tube by joining two opposite edges
and then pasting together the top and bottom tubular
ends.

Two vectors are introduced to describe this process.
The first one is the chiral vector,ChChCh, which runs along
the circumference of the tube. In the standard hexag-
onal lattice this vector is described by indices(n, m),
as shown in Fig. 1:

ChChCh = na1a1a1 + ma2a2a2 (1)

Because of the high symmetry of the honeycomb lat-
tice there are twelve equivalent ways to label a given
tube. By convention, only a 30◦ wedge is therefore
considered so as to have a one-to-one correspon-
dence between(n, m) indices and tubes (cf. Fig. 2)
[6]. Within this wedge only two directions result in
non-chiral tubes: the armchair direction(n, n) and the
zigzag direction(n, 0). Note that for other directions
the strip itself, as long as it is flat, has no intrinsic
handedness. Chirality only appears when the folding
starts, i.e. there are two ways to fold the strip along the
chiral vector, forward or backward, which will pro-
duce enantiomeric forms. Since we do not at present
consider optical activity, we will not pay attention to
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Fig. 1. Definition of the chiral vectorChChCh and the twist vectorTTT .
This example shows a(3, 2, 5, −7) torus.

the distinction between antipodes. The second vector
is the twist vectorTTT . It links atoms on the open tubu-
lar ends which will be glued together when the ends
are joined. Its indices will be denoted as(p, q):

TTT = pa1a1a1 + qa2a2a2 (2)

The vectorTTT is chosen in the 180◦ wedge of the lattice
counterclockwise fromChChCh to −ChChCh

We thus arrive at a four-parameter toroid la-
bel (n, m, p, q) which is in fact redundant and

Fig. 2. A given vector can be realised in twelve different ways on
the graphene sheet. All solid circles are equivalent under six-fold
rotation, while the open circles are the images of the solid ones
under two-fold rotations along axis in the plane of the sheet. Only
the 30◦ gray wedge is considered when defining the chiral vector.

non-unique. More rigorous labeling systems, requir-
ing only three indices, have been described [7,8]. But
for present purposes the(n, m, p, q) system is more
practical. The equivalent rigorous code can always be
found [5]. From simple geometrical considerations,
the number of atomsN in a torus(n, m, p, q) is given
by

N = 2(mp− nq) (3)

From a topological point of view, the interchange of
the chiral and twist vectors generates an equivalent
toroid, with the same spectrum. However, from a 3D
geometrical point of view these toroids with inter-
changed chiral and twist vectors are different objects.
We therefore, emphasise that in the(n, m, p, q) label-
ing the(n, m) vector always corresponds to a winding
around the tubular ring of the toroid while the(p, q)

vector represents a winding around the central hole.

3. The electronic structure of toroids in the
tight-binding approximation

Thep-electronic structure of toroids arises from the
p-band structure of graphene by a double folding of
the Brillouin zone.

Each carbon atom in graphene contributes one elec-
tron in a 2pz orbital projecting perpendicularly from
the plane of the sheet. Thep-band corresponds to a
bonding and antibonding energy surface [9], described
by

E±
kkk

= ±γ0

×
{

1 + 4 cos

√
3kxa

2
cos

kya

2
+4 cos2

kya

2

}1/2

(4)

with γ0 the hopping integral;a = |a1a1a1| = √
3aC–C =√

3 × 1.42 Å is the lattice constant andkx and ky

are cartesian components of the wave vector. The
first Brillouin zone is a regular hexagon (cf. Fig. 3)
[10].

The folding of the zone occurs when cyclic condi-
tions are imposed which correspond to the rolling up
of the sheet and the closing of the tube. The rolling up
of the sheet along the chiral vector constitutes the first
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Fig. 3. The first Brillouin zone of the graphene sheet. The solid
heavy lines indicate borders that belong to the half-open zone,
heavy dashed lines belong to the neighbouring zones. Of the six
vertices, only the two K-points belong to the zone. Also indicated
are the M-points, the0-point and the lineE(kkk) = ±1 (the dotted
line).

zone folding and reduces the Brillouin zone to a set
of lines withk-values that obey the cyclic condition

ChChCh · kkk = 2πln (5)

whereln is an integer, the nanotube line index. These
nanotube lines are perpendicular to the direction of
the chiral vector in reciprocal space.

The second folding corresponds to the cyclic con-
dition for the twist vector:

TTT · kkk = 2πlt (6)

wherelt is an integer torus line index. The torus lines
are perpendicular to the direction of the twist vector
in reciprocal space.

The allowedp-states must obey both cyclic condi-
tions and thus will coincide with the intersection points
of nanotube and torus lines. The allowedk-points can
easily be expressed as functions of(n, m, p, q) and
(ln,lt ):

kx = 2π√
3a

lt (m − n) + ln(p − q)

mp− nq

ky = 2π

a

lt (n + m) − ln(p + q)

mp− nq
(7)

These equations describe a discrete set of allowed
points, with cardinal numberN/2. Since for each
k-point there is a bonding and an antibonding level the
total number of states is indeed equal to the number
of carbon atomsN .

For some values of the(n, m, p, q) parameter set
the set of allowedk-points may contain special sym-
metry points of the first Brillouin zone, denoted as
the trigonal K-points at zero energy and the digonal
M-points at energy±γ0. The central0-point, which
has hexagonal symmetry, will always be allowed. It
corresponds to the total bonding and antibonding com-
binations withε0 = ±3γ0. The presence or absence of
the K-points in the toroidal eigenvectors is of primary
importance. If the K-points are present the occupied
and empty bands are touching like in a zero bandgap
conductor, while if absent there is an insulating gap
between the valence and conduction bands. It can eas-
ily be shown that the sufficient condition for presence
of the K-points in a torus band is the simultaneous
divisibility of (n − m) and(p − q) by 3.

4. Analysis of a giant torus

The coiled samples reported by Martel et al. [4] have
average ring diameters of 600–800 nm and a tubular
cross section with a width of approximately 1.4 nm.
The latter diameter is of the order of magnitude of
fullerene diameters.

It can be estimated that such coils will consist of
several hundreds of thousands of atoms. In the present
example we will consider for practical reasons a torus
which is much smaller but already gives an impression
of a giant molecular torus. It should be kept in mind
that the interatomic strain in a torus of this size is still
too large to maintain a perfectly circular shape [11].
Spontaneous kinks are likely to be formed unless pen-
tagonal and heptagonal defects are introduced. Fig. 4
provides a plot of an ideal circular polyhex torus of
type(10, 4, 48, −64) with N = 1664 atoms. The ring
diameterD and tubular diameterd are given by

D = T cos(β − π/2)

π
≈ 45.5 Å (8)

d = Ch

π
≈ 10 Å (9)
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Fig. 4. A view of a large torus(10, 4, 48, −64) with D16 symmetry.

with β the angle betweenChChCh andTTT in the strip on the
graphite sheet [5]. In these expressionsCh andT are
the lengths ofChChCh andTTT and are given by

Ch = a(n2 + m2 + nm)1/2 (10)

T = a(p2 + q2 + pq)1/2 (11)

Fig. 5. Model of torus(10, 4, 48, −64) highlighting theD16 symmetry. Alternating rotational units are shaded darker. TheC2 axes pass
through the centre of the bond between the two dark atoms and through the centre of the dark hexagon.

An analysis of the point group symmetry of this
torus is based on the subgroup structure of the cylin-
drical groupD∞h. If the chiral vector does not point
along the armchair or zigzag directions, the corre-
sponding nanotube will be chiral, and so will be the
final torus. For such a chiral structure no improper
symmetry elements are allowed, leaving onlyCν or
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Fig. 6. Anapole whirling motion around the tubule forming the toroid. This motion does not destroy the principal rotational axis.

Dν as possible point groups. Such is the case for the
present torus.

A rotation by an angleα = 2π/ν about an axis
through the centre of the torus corresponds on the un-
folded strip to a translation over a distanceT/ν along
the twist vector. This will be a symmetry operation if
ν is a common factor ofp andq. Hence in general
we may conclude that a torus(n, m, p, q) has a prin-

Fig. 7. Density of States for a giant torus(10, 4, 480, −640).

cipal Cν axis, whereν is the largest common divisor
of p andq. As an example, for the torus in Fig. 4 the
largest common factor ofp = 48 andq = −64 equals
16 and we indeed have aC16 rotation axis through
the centre (cf. Fig. 5). This conclusion is independent
of the actual revolution of the tubular frame around
its spine. This whirling motion, which is represented
in Fig. 6, transforms in cylindrical symmetry as6+

u ,
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and is referred to as the molecular anapole mode [12].
Because of its symmetry it is able to destroy the hori-
zontal symmetry plane and the two-fold rotation axis
perpendicular to the cylindrical axis, but not the ver-
tical planes or principal rotation elements.

Perpendicular to its principalCν symmetry a chi-
ral torus can have additionalC2 axes in its equatorial
plane if centres of bonds or hexagonal faces are lying
precisely in the equatorial plane. This thus will depend
on the actual 3D realisation of the torus and cannot
be decided from the unfolded strip. Knowing the po-
sitions of the atoms, such special points can easily be
found. As an example, the giant torus in Fig. 4 has
equatorialC2 axes and thus has point group symmetry
D16 (cf. Fig. 5).

We also have determined the electronic energy lev-
els of giant toroids using the double zone folding pro-
cedure. The results for a torus which is ten times as
big as the one of Fig. 4 are represented in a Density of
States plot in Fig. 7. This diagram is extremely similar
to DOS plots for nanotubes (see e.g. [13]).

One easily recognises the bipartite character of the
energy bands of the graphite sheet. Further note the
clear resonances or Van Hove singularities which cor-
respond to the nanotube lines. The parent tube of our
choice is of the metallic type (n − m is divisible by
3), which gives rise to the typical zero-gap Fermi re-
gion. However, the difference between the twist vector
parameters,p − q, is not divisible by 3. As a result
there will be a very tiny ‘toroidal’ bandgap of approxi-
mately 0.63× 10−2γ0.

5. Conclusion

The electronic structure of carbon toroids can be ob-
tained by a straightforward extension of the nanotube

zone folding procedure along the direction of the tube.
For giant tori the resulting Density of States diagram
is very similar to the diagram of infinite tubes.
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